Stochastic particle barcoding for single-cell tracking and multiparametric analysis.
نویسندگان
چکیده
This study presents stochastic particle barcoding (SPB), a method for tracking cell identity across bioanalytical platforms. In this approach, single cells or small collections of cells are co-encapsulated within an enzymatically-degradable hydrogel block along with a random collection of fluorescent beads, whose number, color, and position encode the identity of the cell, enabling samples to be transferred in bulk between single-cell assay platforms without losing the identity of individual cells. The application of SPB is demonstrated for transferring cells from a subnanoliter protein secretion/phenotyping array platform into a microtiter plate, with re-identification accuracies in the plate assay of 96±2%. Encapsulated cells are recovered by digesting the hydrogel, allowing subsequent genotyping and phenotyping of cell lysates. Finally, a model scaling is developed to illustrate how different parameters affect the accuracy of SPB and to motivate scaling of the method to thousands of unique blocks.
منابع مشابه
Stochastic Barcoding for Single-cell Tracking
We present stochastic barcoding (SB), a method for tracking cell identity across analytical platforms. SB uses a randomly generated code based on number, color and position of beads encapsulated together with a set of cells of interest. We demonstrate SB use in an application where cells are transferred from a microwell array into a microtitre plate while keeping their identity, and obtain an a...
متن کاملStatistical inference in partially observed stochastic compartmental models with application to cell lineage tracking of in vivo hematopoiesis
Single-cell lineage tracking strategies enabled by recent experimental technologies have produced significant insights into cell fate decisions, but lack the quantitative framework necessary for rigorous statistical analysis of mechanistic models of cell division and differentiation. In this paper, we develop such a framework with corresponding moment-based parameter estimation techniques for c...
متن کاملOptical Barcoding for Single-Clone Tracking to Study Tumor Heterogeneity.
Intratumoral heterogeneity has been identified as one of the strongest drivers of treatment resistance and tumor recurrence. Therefore, investigating the complex clonal architecture of tumors over time has become a major challenge in cancer research. We developed a new fluorescent "optical barcoding" technique that allows fast tracking, identification, and quantification of live cell clones in ...
متن کاملDesigning Stochastic Cell Formation Problem Using Queuing Theory
This paper presents a new nonlinear mathematical model to solve a cell formation problem which assumes that processing time and inter-arrival time of parts are random variables. In this research, cells are defined as a queue system which will be optimized via queuing theory. In this queue system, each machine is assumed as a server and each part as a customer. The grouping of machines and parts...
متن کاملDmd060798 227..233
Advanced single-cell analysis technologies (e.g., mass cytometry) that help in multiplexing cellular measurements in limited-volume primary samples are critical in bridging discovery efforts to successful drug approval. Mass cytometry is the state-of-the-art technology in multiparametric single-cell analysis. Mass cytometers (also known as cytometry by time-of-flight or CyTOF) combine the cellu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 11 4 شماره
صفحات -
تاریخ انتشار 2015